The impact of isolated lesions on white-matter fiber tracts in multiple sclerosis patients
نویسندگان
چکیده
Infratentorial lesions have been assigned an equivalent weighting to supratentorial plaques in the new McDonald criteria for diagnosing multiple sclerosis. Moreover, their presence has been shown to have prognostic value for disability. However, their spatial distribution and impact on network damage is not well understood. As a preliminary step in this study, we mapped the overall infratentorial lesion pattern in relapsing-remitting multiple sclerosis patients (N = 317) using MRI, finding the pons (lesion density, 14.25/cm(3)) and peduncles (13.38/cm(3)) to be predilection sites for infratentorial lesions. Based on these results, 118 fiber bundles from 15 healthy controls and a subgroup of 23 patients showing lesions unilaterally at the predilection sites were compared using diffusion tensor imaging to analyze the impact of an isolated infratentorial lesion on the affected fiber tracts. Fractional anisotropy, mean diffusion as well as axial and radial diffusivity were investigated at the lesion site and along the entire fiber tract. Infratentorial lesions were found to have an impact on the fractional anisotropy and radial diffusivity not only at the lesion site itself but also along the entire affected fiber tract. As previously found in animal experiments, inflammatory attack in the posterior fossa in multiple sclerosis impacts the whole affected fiber tract. Here, this damaging effect, reflected by changes in diffusivity measures, was detected in vivo in multiple sclerosis patients in early stages of the disease, thus demonstrating the influence of a focal immune attack on more distant networks, and emphasizing the pathophysiological role of Wallerian degeneration in multiple sclerosis.
منابع مشابه
The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملThe Assessment of Structural Changes in MS Plaques and Normal Appearing White Matter Using Quantitative Magnetization Transfer Imaging (MTI)
Introduction: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS), affecting mostly young people at a mean age of 30 years. Magnetic resonance imaging (MRI) is one of the most specific and sensitive methods in diagnosing and detecting the evolution of multiple sclerosis disease. But it does not have the ability to differentiate between distinct histopathologic...
متن کاملPathological Assessment of Brain White Matter in Relapsing-Remitting MS Patients using Quantitative Magnetization Transfer Imaging
Introduction: Multiple sclerosis (MS) is characterized by lesions in the white matter (WM) of the central nervous system. Magnetic resonance imaging is the most specific and sensitive method for diagnosis of multiple sclerosis. However, the ability of conventional MRI to show histopathologic heterogeneity of MS lesions is insufficient. Quantitative magnetization transfer imaging (qMTI) is a rel...
متن کاملIdentification of fibers at risk for degeneration by diffusion tractography in patients at high risk for MS after a clinically isolated syndrome.
PURPOSE Focal inflammatory/demyelinating lesions are thought to be the source of Wallerian degeneration or other injury to local, transiting fiber tracts in the brain or spinal cord in multiple sclerosis (MS). A methodology is established to isolate connections between focal demyelinating lesions and intersecting fibers to permit explicit analyses of the pathology of secondary fiber injury dist...
متن کاملA challenging entity: multiple sclerosis or collagen tissue disorders: A case series of 6 patients
Background: Multiple sclerosis and other demyelinating processes are sometimes difficult to differentiate from the neurological involvement in autoimmune diseases. Distinguishing multiple sclerosis from other lesions due to autoimmune diseases is crucial to avoid unsuitable or delayed treatments. Methods: Charts of 6 patients diagnosed with mimicking multiple sclerosis between 1996 and 2014 we...
متن کامل